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6. The Geometrical Theory of Diffraction
and Its Application

The rigorous treatment of the diffraction from radiating systems
(scatterers and antennas) using the eigenfunction method or the method
of Rayleigh, which is based upon the expansion of the field in inverse
powers of wavelength, is limited to those objects whose surfaces coincide
with the surfaces of orthogonal curvilinear coordinates. Moreover, the
solutions obtained are poorly convergent for objects more than a
wavelength or so in extent.

Recently there has been considerable interest in the integral-equation
formulation of the radiation problem, and its solution by the moment
method. Arbitrary shapes can be handled by this method, but in general
numerical results also are restricted to objects not large in terms of a
wavelength, because of the limitations of present-day computers.

When a radiating object is large in terms of a wavelength the scattering
and diffraction is found to be essentially a local phenomenon identifiable
with specific parts of the object, e.g., points of specular reflection, shadow
boundaries, and edges. The high-frequency approach to be discussed
in this chapter employs rays in a systematic way to describe this
phenomenon. It was originally developed by Keller and his associates
at the Courant Institute of Mathematical Sciences. This method referred
to as the geometrical theory of diffraction is approximate in nature, but
in many examples it appears to yield the leading terms in the asymptotic
high-frequency solution. Moreover, in many cases it works surprisingly
well on radiating objects as small as a wavelength or so in extent. Thus
if a solution is desired over a wide spectral range, this high-frequency
method nicely complements the low-frequency methods described in the
second and third chapters. Finally it will be seen to be sufficiently flexible
so that it can be combined with the moment method thereby extending
the class of solutions for either method used separately.

The treatment of high-frequency diffraction to follow is restricted
I to perfectly conducting objects located in isotropic, homogeneous media.

The method presented, however, can be extended to penetrable objects
and to inhomogeneous and anisotropic media.
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6.1. Asymptotic Solution of Maxwell’s Equations

(6.1)

subject to the condition that

F-E = 0. (6.2)

s

(6.3)

(6.5)

E[s)~e~Jk°v(s> E0(s). (6.7)

C

E(R,a>) = e"jtw(',) f
m = 0

1
7

(ja>F

in which R is the position vector, and ka is the phase constant of empty
space. Substituting (6.3) into (6.1) and (6.2) and equating like powers of
co, one obtains the eikonal equation

I = n2

*-Eo = 0, (6.6)

plus higher-order transport and conditional equations which do not
concern us here. In the preceding equations s = Pip/n is a unit vector in
the direction of the ray path, and s is the distance along the ray path.

We are interested here in the solution at the high-frequency limit, so
the asymptotic approximation for E reduces to

(6.4)

together with the first-order transport and conditional equations

dE0 ,
ds

6.1.1. Geometrical Optics

Let us begin by examining an asymptotic high-frequency solution to
Maxwell’s equations in a source-free region occupied by an isotropic,
homogeneous medium. Our approach follows that introduced by
Luneberg [6.1] and Kline [6.2,3]. From Maxwell’s equations the
electric field is found to satisfy

V2E + k2E = 0

The phase constant k = co where co is the angular frequency, e is
the permittivity of the medium, and p is the permeability; a time de­
pendence of exploit) is assumed.

The Luneberg-Kline expansion of the electric field for large co is
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CAUSTICS

S

- Fig. 6.1. Astigmatic tube of rays

E(s)~Eo(0) (6-8)

e

Equation (6.5) is readily integrated and after some manipulation one
obtains [6.4, 5].

Si 51 e- jks

foi + s) (62 + s)

in which s = 0 is taken as a reference point on the ray path, and gt, g2
are the principal radii of curvature of the wavefront at s = 0. In Fig. 6.1
gt and g, are shown in relationship to the rays and wavefronts.

Equation (6.8) is commonly referred to as the geometrical-optics
field, because it could have been determined in part from classical
geometrical optics. Specifically the quantity under the square root, the
divergence factor, follows from conservation of power in a tube of rays;
in addition, we note that the eikonal equation could have been deduced
from Fermat’s principle, a fundamental postulate of classical geometrical
optics. As is well known, classical geometrical optics ignores the polariza­
tion and wave nature of the electromagnetic field; however, the leading
term in the Luneberg-Kline asymptotic expansion is seen to contain this
missing information.

It is apparent that when s = — g, or — g2, E(s) given by (6.8) becomes
infinite, so that this asymptotic approximation is no longer valid. The
intersection of the rays at Lines 1-2 and 3-4 of the astigmatic tube of
rays is called a caustic. As we pass through a caustic in the direction of

J propagation, g + s changes sign and the correct phase shift of +tt/2 is
1 introduced naturally. Equation (6.8) is a valid high frequency approxima­

tion on either side of the caustic; however the field at the caustic must be
found from separate considerations [6.6,7],

Employing the Maxwell curl equation VXE = —Jco/iH, it follows
I from (6.3) that the leading term in the asymptotic approximation for the
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magnetic field is

H~sxE/Zc,

6.1.2. Reflection

Er‘(s) = e-J‘””'lsl£[,(s) (6.10)

a

n x (E‘ + Er) = 0, (6.11)

it can be shown that

Eo (Qr) = 4 (Qr) ■ ? = 4 (Qr) • [ej| ej (6.12)

^e'xxi. (6.13)

<11

(6.9)

where Zc = ]/ii/s is the characteristic impedance of the medium, and E
is given by (6.8).

A.
S' As'

Fig. 6.2. Reflection at a curved surface

Geometrical optics provides a high-frequency approximation for the
incident, reflected and refracted fields. Let us find the geometrical
optics field

where e± is a unit vector perpendicular to the plane of incidence, and ej|,
efl are unit vectors parallel to the plane of incidence so that

reflected from the point QR on a perfectly-conducting smooth curved
surface S; the distance between QR and the field point on the reflected
ray is denoted by s. The outward directed unit normal vector at QR
is n, and s' and srare unit vectors in the directions of incidence and
reflection, respectively, as shown in Fig. 6.2.

From the boundary condition on the total electric field at QR on S,

118 ii
r a
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(6-14)

vHQr) = «p'(Qr) - (6-15)

£

E^(s) = Ei«(QR).J? (6.16)

(6.17)

(6.18)

+
(6.19)2

+

77'

4
al a2

I °
I

1
Qi

In matrix notation the reflection coefficient has a form familiar for the
reflection of a plane electromagnetic wave from a plane, perfectly-
conducting surface, namely

The above equality leads to the law of reflection, and it is also employed
to obtain (6.12).

The geometrical optics reflected field is

1 sin202

sin202

sin2 6, \
«2 /

sin201
“2

HU

_ 1
COS 6,

~ |/ cos20( (

in which g[, q'2 are the principal radii of curvature of the reflected wave­
front at Qr. It can be shown that

This is not surprising if one considers the local nature of high-frequency
reflection, i.e., the phenomenon for the most part depends on the geometry
of the problem in the immediate neighborhood of QR. Note that the
incident and reflected fields must be phase matched on S to satisfy
(6.11), i.e.,

1 _ J___
e[ “2 Vd

2 Ui + eJ+ :

___ elez -Jt,
(el + s)(ei+s)

' f i ,
-i + /.

The above equations are reminiscent of the simple lens and mirror
formulas of elementary physics; this is particularly true of an incident
spherical wave, where g\ = g2 = s'. Expressions for f, and f2 are given in
[6.8], For an incident spherical wave,

1
2 Hi

1
f
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elel = ]Ai <>2/2 (6.20)

6.1.3. Diffraction

To overcome the limitations of the geometrical-optics field pointed out
at the end of the last subsection, it is necessary to introduce an additional
field, the diffracted field. Keller [6.10-12] has shown how the diffracted

in which 0, and 02 are the angles between s' and the principal directions
associated with the principal radii of curvature of the surface a, and a2,
respectively. In the case of plane wave illumination it follows from
(6.17-19),

which is useful in calculating the far-zone reflected field.
If fl; or a2 become infinite, as in the case of a flat plate or cylindrical

scatterers, it is evident that geometrical optics fails. Geometrical optics
approximates the scattered field only in the direction of specular reflec­
tion, as determined by the law of reflection.

In principle the geometrical-optics approximation can be improved
by finding the higher-order terms E,, E2,... in the Luneberg-Kline
expansion. Luneberg-Kline expansions for fields reflected from cylinders,
spheres and other curved surfaces with simple geometries are given in
[6.9]. These terms improve the high-frequency approximation of the
scattered field if the specular point is well away from shadow boundaries,
edges or other surface discontinuities; however, it is noted that they
tend to become singular as the specular point approaches close to a
shadow boundary on the surface. Furthermore, these terms do not
describe the diffracted field which penetrates into the shadow region,
nor do they correct the discontinuities in the geometrical-optics field at
shadow and reflection boundaries. An examination of available
asymptotic solutions for diffracted fields reveals that they contain
fractional powers of co. Furthermore, one notes that caustics of the
diffracted field are located at the boundary surface. From these con­
siderations it is evident that the Luneberg-Kline series cannot be used
to treat diffraction. At the present time additional postulates are required
to introduce the high-frequency diffracted field; these are given in the
next subsection.

It should ne noted, however, that for a> sufficiently large the geo-
metrical-optics field may require no correction, i.e., the scattering
phenomenon is entirely dominated by geometrical optics. This is the
case for backscatter from smooth curved surfaces with radii of curvature
very large in terms of a wavelength.
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£

Ei(s) = JF e~Jk'da. (6.21)

field may be included in the high-frequency solution as an extension
of geometrical optics. The postulates of Keller’s theory, commonly
referred to as the geometrical theory of diffraction (GTD), are summarized
as follows.

(1) The diffracted field propagates along rays which are determined
by a generalization of Fermat's principle to include points on the
boundary surface in the ray trajectory.

2) Diffraction like reflection and transmission is a local phenomenon
at high frequencies, i.e., it depends only on the nature of the boundary
surface and the incident field in the immediate neighborhood of the
point of diffraction.

3) The diffracted wave propagates along its ray so that
a) power is conserved in a tube (or strip of rays),
b) the phase delay along the ray path equals the product of the wave

number of the medium and the distance.
The diffracted rays which pass through a given field point are found

from the generalized Fermat’s principle. The notion that points on the
boundary surface may be included in the ray trajectory is not new.
Imposing the condition that a point on a smooth curved surface be
included in the ray path between the source and observation point is a
time-honored method for deducing the reflected ray and the law of
reflection. It seems reasonable to extend the class of such points as Keller
has done. Diffracted rays are initiated at points on the boundary surface
where the incident geometrical-optics field is discontinuous1, i.e., at
points on the surface where there is a shadow or reflection boundary of
the incident field. Examples of such points are edges, vertices and points
at which the incident ray is tangent to a smooth, curved surface. The
diffracted rays like the geometrical-optics rays follow paths which make
the optical distance between the source point and the field point an
extremum, usually a minimum. Thus the portion of the ray path which
traverses a homogeneous medium is a straight line, and if a segment of
the ray path lies on a smooth surface, it is a surface extremum or geodesic.

For points away from the diffracting surface. Postulate 3 of Keller's
theory actually follows from his first two postulates. Consider a normal
congruence of rays emanating from a point of diffraction on the radiating
surface. The high-frequency diffracted field at P, see Fig. 6.3, may be
found by asymptotically approximating its integral representation

1 The incident field may be a diffracted field; a discontinuity of the diffracted field on
the boundary surface initiates a higher-order diffracted ray.
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Ps

(6.22)

and

daa dxdy/h ■ s

(6.23)

in which x, y are rectangular coordinates perpendicular to s at 0, one
obtains

in which h is the unit normal vector to the wavefront and the other
quantities are defined in Fig. 6.3. Then employing (6.9) together with the
approximations

The integral is taken over a wavefront associated with the diffracted rays
and

WAVEFRONT
S

Fig. 6.3. Ray and wavefront geometry

r * S + + + 4" (“
2 \s Qi/ 2 \s

by using the method of stationary phase [6.13, 14], Equation (6.23) has
the same form as (6.8), which is not an unexpected result, because this
development also can be applied to the incident and reflected fields of

F = |r x [r x(n x nd)] - A- r x (Ed x it)

Ed(s) ~ Ed(0) \ g|f2 e-J“
/ (»i + s) <02 + s)

i
z.
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(6.24)

£d(s) = C (6.25)

£d(s) = C (6.26)

(6.27)

exists, and so for vertex or corner diffraction

(6.28)

geometrical optics; however, it does not yield higher-order terms as does
the Luneberg-Kline expansion.

In calculating the diffracted field it is convenient to choose the point
of diffraction on the boundary surface as the reference point 0. However,
this point of diffraction is also a caustic of the diffracted ray. First con­
sider the case where the caustic is at an edge or forms a line on a smooth
convex surface from which rays shed tangentially. Either g, or g2 denoted
by g' vanishes; however, Ed(s) must be independent of the location of the
reference point; hence it follows from (6.23) that

Diffraction is a local effect according to Postulate 2, and since we are
dealing with a linear phenomenon, C and B must be proportional to the

e
s(e + s)

firn £d(0) |/7 = C

exists, so that

Next let us consider the diffraction from a vertex or corner, where the
diffracted rays emanate from a point caustic at the tip. In this case
Qi = 82=8', and again since £d(s) must be independent of the reference
point s = 0, it follows from (6.23) that

. e~JksEd(s) = B —----- .
s

in which g is the distance between the caustic on the boundary surface
(the point of diffraction) and the second caustic of the diffracted ray,
which is away from this surface. Thus the diffracted rays, like the geo­
metrical-optics rays form an astigmatic tube, as shown in Fig. 6.1 with
either the caustic 1-2 or 3-4 at the point of diffraction on the boundary
surface. The caustic distance o may be determined by differential geome­
try; an expression for g will be given later.

For a two-dimensional problem we note that g = co, so (6.25) reduces
to

lim £d(0)o' = B
e'-0
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6.2. Edge Diffraction

(6.29)

Ed(s) = E'(Qe) • P W>, ft) (6.30)

results. Here e is a unit vector directed along the edge, and s' and s' are
unit vectors in the directions of incidence and diffraction, respectively.
The above equation also follows from the requirement that the incident
and diffracted fields be phase matched along the edge. If the incident ray
strikes the edge obliquely, making an angle ft with the edge, as shown in
Fig. 6.4b, the diffracted rays lie on the surface of a cone whose half
angle is equal to ft. The position of the diffracted ray on this conical
surface is given by the angle </>, and the direction of the ray incident on
the edge, by the angles </>' and P'o; these angles are defined in Fig. 6.4a
and b. Equation (6.29) may be used to develop a computer search program
to locate the points of edge diffraction.

From (6.25) and the discussion following, the expression for the
electric field of the edge-diffracted ray is

g
sfe + s)

2 If the incident field is rapidly varying at the point of diffraction, it may be possible
to separate it into slowly-varying components for the purpose of calculating the diffracted
field.

incident field at the point of diffraction, if the incident field is not rapidly
varying there2. The constant of proportionality is referred to as a
diffraction coefficient, and for electromagnetic fields it is a dyadic. It is
convenient to determine this from the asymptotic solution of the simplest
boundary value problem having the same local geometry as that near
the point of diffraction. A problem of this type is referred to as a canonical
problem; canonical problems are employed to determine the diffraction 1
coefficients for edges, the diffraction coefficients and attenuation con-1
stants for smooth curved surfaces, and other parameters of the GTD.

6.2.1. The Wedge

Let us consider the field radiated from a point source at 0 and observed
at P in the presence of a perfectly-conducting wedge, as shown in Fig. 6.4a,
where the rays are projected on a plane perpendicular to the edge at the
point of diffraction QE. Applying the generalized Fermat's principle,
the distance along the ray path 0QEP is a minimum and the law of edge
diffraction

s'-e = s-e
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■A
'R

'<£ = 0

SB
</>= mr(a)

DIFFRACTED
RAYS -----

INCIDENT
RAY ~

(b)
Fig. 6.4a and b. Reflection and diffraction from a wedge. The subscript p indicates that the ray
path is shown projected on a plane perpendicular to the edge

in which /3'0) is the dyadic edge-diffraction coefficient. Since the
pertinent dimension in wedge diffraction is wavelength, it follows from
dimensional considerations that the diffraction coefficient must vary as
k tl2. The dyadic diffraction coefficient for a perfectly-conducting wedge
has been obtained by Kouyoumjian and Pathak; their work is described
in [6.8, 15] and will only be summarized here. As noted before, the dyadic
diffraction coefficient can be found from the asymptotic solution of
canonical problems, which in this case involve the illumination of the
wedge by plane, cylindrical, conical and spherical waves. The solution of
these canonical problems serves as a basis for deducing the dyadic

s*<p
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(b)
Fig. 6.5a and b. Diffraction by a curved edge
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J

Thus the coordinates of the diffracted ray (s,j30,</>) are spherical co­
ordinates and so are the coordinates of the incident ray (s', , </>'),

diffraction coefficient for arbitrary wavefront illumination and for the
more general case where there are curved edges and curved surfaces.

Let us introduce an edge-fixed plane of incidence containing the
incident ray and the edge and a plane of diffraction containing the
diffracted ray and the edge. The unit vectors d>' and are perpendicular
to the edge-fixed plane of incidence and the plane of diffraction, re­
spectively. The unit vectors P’o and are parallel to the edge-fixed j
plane of incidence and the plane of diffraction, respectively, and

^o = s'x^>', ji0 = sx<j>.
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D.(<M';ft) =
(6-32)
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except that the incident (radial) unit vector points toward the origin QE.
These ray-fixed coordinates and their unit vectors are shown in Figs. 6.4
and 6.5. Although the latter figure depicts curved edges and curved
surfaces, it is still helpful in the present discussion (one may regard the
wedge as just a special case of the curved edge structure).

For each type of edge illumination mentioned previously, it is shown
in [6.15] that the dyadic diffraction coefficient can be represented simply
as the sum of two dyads, if the ray-fixed coordinates mentioned in the
preceding paragraph are used.

7t
cos------ cos

n
71

COS--------cosn

1

for all four types of illumination, which is important because the diffrac­
tion coefficient should be independent of the edge illumination away
from shadow and reflection boundaries. The wedge angle is (2 — n) n,
where the plane surfaces forming the wedge are </> = 0 and <p = htt,
see Fig. 6.4a. This expression becomes singular as a shadow boundary
(SB) or a reflection boundary (RB) is approached, which further ag­
gravates the difficulties at these boundaries resulting from the dis­
continuities in the incident or reflected fields. The above scalar diffraction

D (4>, ft) = - P'oft Ds(</>, <j>'; ft) - Dh (</>,</>'; ft), (6.31)

where £>s is the scalar diffraction coefficient for the acoustically soft
(Dirichlet) boundary condition at the surface of the wedge, and Dh is the
scalar diffraction coefficient for the acoustically hard (Neumann)
boundary condition. This result shows the close connection between
electromagnetics and acoustics at high frequencies. If the dyadic diffrac­
tion coefficient is expressed in an edge-fixed coordinate system, it is
found to be the sum of seven dyads. In matrix notation this means that
the diffraction coefficient is a 3x3 matrix with seven non-vanishing
elements, instead of the 2x2 diagonal matrix which may be used to
represent the diffraction coefficient in the ray-fixed coordinate system.
In this sense the ray-fixed coordinate system is the natural coordinate
system of the problem.

If the field point is not close to a shadow or reflection boundary and
<t>' + 0 or n n, the scalar diffraction coefficients

- 3 . 7Te sin —
n

n[/2rrZc sin ft
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■F[fcLa+($ — <£')]
(6.33)

F[kLa-(<t>-</>')]+ cot

F[kLa+(<t> + </>')]

■jF[kLa~(<t> + </>')]}],+ cot

(6.34)

When X is small

[|/jtX-2Ar?i'-^A'2e’J7] <4(f+x),F(X) (6.35)

and when X is large

Fffl (6.36)

a* Q3) = 2 cos2 (6.37)

If the arguments of the four transition functions in (6.33) exeed 10, the
transition functions are approximately equal to one, and (6.33) reduces to
(6.32).

The argument of the transition function X = kLa*^ + </>') in which
A is a distance parameter which will be given later. The large parameter
in the asymptotic approximation is kL. Let <i ± </>' = /J, then

where

F(X) = 2j|j/X|e>3f f
IvTl

n + + 0')
2n

2n7tN±-/?
2

. rt
-e~J*

2n |/2ti I: sin /3'0

n+ (</>- 4>’)
2n

coefficients also have been given by Keller [6.12], The case of grazing
incidence $' = 0 or mt will be considered later.

Expressions for the scalar diffraction coefficients which are valid at
all points away from the edge (again excluding </>' = 0 or nrt) are

+ {cot {-
n - (j, + </>')

2n

X icot (-

7t - (</» - </>')

2n

1 3 1 . 15 1 75 1 '
1 2X 4 X2 1 8 X3 + 16 A'4 .
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in which IV1 are the integers which most nearly satisfy the equations

2nnN+ — /J = n, (6.38)

(6.39)

The cotangent is singular when value of /V at the boundary

N+ =0

cot N~ = 0

N+ = l

N~ =0

Table 6.1. Behaviour of terms in the edge diffraction coefficient at shadow and reflection
boundaries

The distance parameter L
that the total field (the sum
diffracted field) be continuous at shadow or reflection boundaries. One

cot(-

= <j>' — n, a SB
surface 0 = 0 is shadowed
0 = 0' + it, a SB
surface (j> = nit is shadowed
0 = (2n-i)n-0', a RB
reflection from surface 0 = nit
0 = 7t-0', a RB
reflection from surface 0 = 0

cot(-

i t

Note that N+ and N each have two values.
a~(p') is a measure of the angular separation between the field point

and a shadow or reflection boundary. The + and — superscripts are
associated with the integers N+ and N~, respectively, which are defined
by (6.38) and (6.39). For exterior edge diffraction (1 < n £ 2), N+ = 0 or 1
and N~ = — 1, 0 or 1. •

At a shadow or reflection boundary one of the cotangent functions
in the expression for D given by (6.33) becomes singular; the other three
remain bounded. Even though the cotangent becomes singular, its
product with the transition function can be shown to be bounded. The
location of the boundary at which each cotangent becomes singular is
presented in Table 6.1. Since discontinuity in the geometrical-optics
field at a shadow or reflection boundary is compensated separately by
one of the four terms in the diffraction coefficient, there is no problem in
calculating the field when two boundaries are close to each other or
coincide. The value of N+ or N~ at each boundary is included in Table 6.1
for convenience; these values remain unchanged in their respective
transition regions unless kL is small.

can be found by imposing the condition
of the geometrical-optics field and the

* + (<W))
2n )

*-(0-0'))
2n )

* + (0 + 0^
2n )

2n )

2itnN = —
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obtains

L =

E^s)
(6.41)

where Ds is given by (6.33). However, unlike (Ref. [16], Eq. (8)), the above
expression may be used in the transition region adjacent to the shadow
boundary at <j> = n. It was found to give accurate values of the diffracted
field in the case of an infinitesimal slot (magnetic dipole) perpendicular
to the edge of the wedge when the slot is only a quarter wavelength from
the edge.

8
s(g + s)

s(gi + s)ei g'2sin2/?o
ei(e> + W2+S) ’ (6.40)

I
where g), gi are the principal radii of curvature of the incident wavefront
at Qe, and g] is the radius of curvature of the incident wavefront in the
edge fixed plane of incidence. Note that g = g, for the wedge.

Grazing incidence, where <f>' = 0 or nn must be considered separately.
In this case Ds = 0, and the expression for Dh given by (6.32) or (6.33) is
multiplied by a factor of 1/2. The need for the factor of 1/2 may be seen
by considering grazing incidence to be the limit of oblique incidence. At
grazing incidence the incident and reflected fields merge, so that one half
the total field propagating along the face of the wedge toward the edge is
the incident field and the other half is the reflected field. Nevertheless, in!
this case it is clearly more convenient to regard the total field as the
“incident” field. £>s = 0 implies that £^0 vanishes; however, as pointed
out by Karp and Keller [6.16], a higher-order term then becomes,
significant where EdPo is proportional to the normal derivative of £j,6 (QJ.i
It can be shown for </>' = 0 that

6.2.2. The General Edge Configuration

In the general case the surfaces forming the edge may be convex, concave
or plane. Our solution is based of Keller’s method of the canonical
problem. The justification of the method is that high-frequency diffrac­
tion like high-frequency reflection is a local phenomenon, and locally
one can approximate the curved edge geometry by a wedge, where the
straight edge of the wedge is tangent to the curved edge at the point of.
incidence QE in Fig. 6.5 and its plane surfaces are tangent to the surfaces

■ SE^QJ
2 8n

1 8 I
j/csin/?0 d<[>' s|
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(6.42)

D.(0, </>';&) =

Iia+(4> -</>')]

F[kll a~ (</>-</>')]+ cot (6.43)

F[kLr°a+(<f> + 0')]

f[/cLr"<rW> + 4>')] ,+ cot

forming the curved edge. With these assumptions, the results for wedge
diffraction can be applied directly to the curved edge problem. As we
have just noted, there is an equivalent wedge associated with every
curved edge structure, and so in generalizing the solution of the wedge,
it is only necessary to modify the expressions for the distance parameter L,
which appear in the arguments of the transition functions.

Thus the form of the dyadic diffraction coefficient is given by (6.31);
the unit vectors and coordinates are shown in Fig. 6.5. It remains to
determine the scalar diffraction coefficients. Outside the transition
regions; these are given by (6.32).

The calculation of the caustic distance g in (6.30) is not a trivial
matter for curved edge diffraction. Employing differential geometry, it is
shown in [6.8, 15] that

71 + (</> + <£')
2n

+ {cot {-
7t - (</> + </»')

2n

X {cot {-
7t - (^ - </>')

2n

a sin2

in which g'c is the radius of curvature of the incident wavefront in the
edge-fixed plane of incidence, which contains s' and e the unit vector
tangent to the edge at QE; nc is the unit vector normal to the edge at
Qe and directed away from the center of curvature; s' and s are unit
vectors in the directions of incidence and diffraction, respectively, see
Fig. 6.5a; a is the radius of curvature of the edge at QE, a > 0.

It is interesting to note that (6.42) like (6.17) and (6.18) has the same
form as the elementary lens equation; here and g correspond to the
object and image distances, respectively.

As in the case of the wedge, the arguments of the transition functions
are determined by imposing the condition that the total field be con­
tinuous at the shadow and reflection boundaries. It is found that

— e~J*
2n]/2nk sin (J’o

tt + (</> ~ M
2n

1 1
e ~ ei
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F(X), a* (ft), N* being defined as before, and

n

c

(6.46)

o

e-J‘s (6.47)

(6.44)

I
= s(g‘+s)gi,g; sin2/?p

elfei+s)(g2 + s) ’

(Ml
M

Q
s(e+s)13-r

— 2 sin — F\2kL' cos2

7C
cos------ cosn

01R1Z0 -aJ M

which considerably simplifies the calculation of the scalar diffraction
coefficients.

In summary to calculate the diffraction from a curved edge, the scalar
diffraction coefficients from (6.43) are substituted into (6.31), and the
resulting dyadic diffraction coefficient is substituted into (6.30). The
caustic distance g is calculated from (6.42). In matrix notation

the appropriate superscripts are omitted here for the sake of simplicity.
Usually no more than one of the four transition functions is

significantly different from one; furthermore the nature of the curved
edge approximation is such that the first two terms within the brackets
of (6.43) can be combined [6.8] to give

_ s(g' + s)gr2g; sin2/?o
e'fei+s)(g^ + s) ’

where g[ and g’2 are the principal radii of curvature of the reflected'
wavefront at QE, and gr is the distance between the caustics of the
diffracted ray in the direction of reflection. It may be found from (6.42) 1
with s = f - 2(n ■ s")n. The additional superscripts o and n on L in (6.43) ■
denote that the radii of curvature (and caustic distance g) are calculated I
at the reflection boundaries rr — </>' and (2n—1)ji — respectively.!
In the far-zone where s > g and the principal radii of curvature g1
and g2 of the incident and reflected wavefronts at QE, (6.44) and (6.45)
simplify to

(6.45)

L_ gig2sin2ft
Q
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6.3. Diffraction by a Vertex

(6.48)

The vertex or corner is a point caustic of the diffracted rays, from (6.28)
and the discussion following, the expression for the electric field of the
vertex diffracted ray is

6.2.3. Higher-Order Edges

The preceding discussion has been restricted to ordinary edges where
the unit normal vector to the surface is discontinuous. However, in the
case of higher-order edges, where some j-th derivative of the surface
has a jump discontinuity (while all lower derivatives are continuous),
it has been shown [6.8] that the dyadic diffraction coefficient has the
same form as in (6.31). Also the dyadic diffraction coefficient for the
scattering from thin, curved wires has this form too.

Recently, Keller and Kaminetzky [6.17] and Senior [6.18] have
obtained expressions for the scalar diffraction coefficients in the case of
diffraction by an edge formed by a discontinuity in surface curvature and
Senior has given the dyadic (or matrix) diffraction coefficient in an edge-
fixed coordinate system. When transformed to the ray-fixed coordinate
system. Senior’s expression for the diffracted field reduces to the form in
(6.30) with D given by (6.31). Keller and Kaminetzky [6.17] also have
given expressions for the scalar diffraction coefficients in the case of
higher-order edges.

E<‘(s) = E‘(Qv).p(0,0;>,^)-^.

The present treatment does not include the modification of the edge
diffracted field which occurs when either the incident or diffracted ray
grazes the surface. The angle between these rays and the surface should
exceed (ka,)"1'3, where a, is the radius of curvature of the surface at QE
in the direction of the incident (or diffracted) ray. Also the present
treatment does not include the effect of surface rays excited at the edge.

From dimensional considerations similar to those applied to the wedge,
■ this diffraction coefficient must vary as k~l, which means that outside its

transitions regions the vertex-diffracted field is in general significantly
! weaker than the edge-diffracted field. Very little work has been done on

the high-frequency diffraction by vertices; it is a complicated, difficult
subject, and there are a variety of such geometries to consider. Some
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6.4. Surface Diffraction
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Fig. 6.6. Diffraction by a smooth convex surface

J

ILLUMINATED
REGION

SHADOW
REGION

I
I
• P
I
I

(SOURCE AT Q)

A

‘SURFACE RAY~

I
•p
I
I

TOP VIEW

Q.

K

results for blunt vertices may be obtained from [6.17], and the diffraction
coefficient for the vertex of a cone in some special cases may be obtained
from [6.19,20],

/^SHADOW BOUNDARY

When an incident ray strikes a smooth, curved perfectly-conducting
surface at grazing incidence, i.e., at the shadow boundary, a part of its
energy is diffracted into the shadow region. Let us consider the field
radiated by the source 0 and observed at P in the shadow region, as
shown in Fig. 6.6. Applying the generalized Fermat’s principle, the
distance OQj Q2P is the shortest distance between 0 and P which does
not penetrate the surface. In detail, a ray incident on the shadow boundary

WAVEFRONT^

'SsX. WAVEFRONT
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<fpm(Qi) = E(Qi)xnlda (6.49)

e

(6.50)

I

at Qj divides; one part of the incident energy continues straight on as
predicted by geometrical optics and a second part follows the surface S
into the shadow region as a surface ray, which sheds diffracted rays
tangentially as it propagates. It follows from this extension of Fermat’s
principle that the incident and diffracted rays are tangent to S and to the
surface ray at Qt and Q2, respectively, and that the surface ray is the
shortest distance between Qj and Q, on S, i.e., the surface ray is a geodesic
curve. The former statement is referred to as the law of surface diffraction,
and it also may be deduced from the requirement that the incident and
diffracted fields are phase matched to the surface ray field at Q, and Q2.
At Q] let t, be the unit_ vector in direction of incidence, nl be the unit
vector normal to_S and ~bl = f, x hl; at Q2 let a similar set of unit vectors
be defined with t2 in the direction of the diffracted ray.

A second configuration of interest occurs when the source is po­
sitioned on the surface, say at Q,. This configuration is relevant to the
radiation from an aperture in S, where the equivalent source is an
infinitesimal magnetic current moment (magnetic dipole)

6.4.1. The Shadow Region

From Fig. 6.6 it is seen that Q2 is a caustic of the diffracted field. There is
a second caustic at a distance Q from this caustic. As noted earlier,

, the diffracted field at P is given by (6.25), where it is convenient to let

C = n2 C„ + b2 Cb

in this case. The C„, Cb are proportional to the surface ray field incident
at Q2; however, as in the case of edge diffraction, the precise relationship

: (like much of the development to follow) is deduced from the asymptotic

in which E is the aperture electric field, and da is an area element of the
aperture. Another type of source which may be positioned at Q, is the
normally-directed electric current dipole. According to the generalized
Fermat’s principle, the ray trajectory from these sources to P is the
curve Q1 Q, P mentioned previously.

The discussion to follow is devoted to methods of calculating the field
’ in the shadow and transition regions of a convex, perfectly-conducting

surface. Deep in the illuminated region the field directly radiated from
the source is found by geometrical optics. Expressions for this field are
well known and will not be repeated here. When the source is not on the
surface the reflected field may be calculated from (6.14), (6.16)—(6.19).
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a(r) = ^(t)ejWo"‘”, (6-51)

u

d/dt(A2 drf) = - 2a(42 dtf),

a(0 = a(to) (6.53)
‘MU exp|- p

d J) (t0)

P-- ■ t0 —-4 *
Fig. 6.7. Surface ray configuration close
to a point source

where t is the distance along the surface ray measured from Q,, </>0 is the
phase at Qn and initially one assumes that A (t) is real.

The surface ray sheds rays tangentially as it propagates along a
geodesic on the curved surface; hence energy is continuously lost from
the surface ray field, and the field of each mode is attenuated. In addition,
it is assumed that the energy flux between adjacent surface rays is
conserved. This may be expressed by

(6-52)

where a. is the attenuation constant for the surface ray mode in question.
The above equation is readily integrated between t0 and t to give

solution of certain canonical problems, which will be described later.
To simplify the discussion, it is assumed that the surface rays are torsion­
less, i.e, b does not change direction along the surface ray.

From the canonical problems it is found that the surface ray field is
composed of infinitely many modes which propagate independently of
each other along a torsionless path. Let the field associated with one of
these modes be

The attenuation constant is a function of t' because it depends on the
local curvature of the surface.

Equation (6.53) must be modified when there is a caustic due to a
point source on the surface at Q1; where t = 0. For t0 small d>j(t0)
= t0 dip0 is the angle between adjacent surface rays, see Fig. 6.7. Moreover,
a(r) must be independent of t0; hence lim a(t0) |/t0 exists as to-0 and we
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define it to be K. It follows then that

(6.54)

nt .E'(l)Dj(l) = aJ(l), (6.55 a)

■ E'(l)£)’(!)= a’(l), (6.55 b)

(6.56a)

(6.56b)

Ed(P) = Ei(l)-[riIh2F + 6162G] (6.57)

in which

F (6.58)

where the constant of proportionality D is the surface diffraction coef­
ficient, the superscript h(s) denotes a quantity associated with the hard
(soft) boundary condition, the subscript p denotes the pth surface ray
mode and Q, and Q2 are replaced by 1 and 2 for the sake of notational
economy.

At Q2 the components of C are linearly related to the surface ray field:

EaJ(2)Dj(2) = C„,
p

IX(2)D’(2) = C6.
p

Q
s(q + s)

a<fi = K exp + j a(t') <h’||

The constant K is proportional to the strength of the source at Q,.
For the source at 0 removed from the boundary surface, the incident

field at Q, may be resolved into normal and binormal components,
which induce hard (h) and soft (s) type surface ray modes, respectively.
The normal derivative of the field at S vanishes for the hard boundary
condition3, and the field at S vanishes for the soft boundary condition.
Thus

Now substituting (6.56) into (6.50) and (6.25), noting that ap(l) and a„(2)
are related by (6.53) and employing (6.55), one obtains

e’Jk'|/^p J, ^‘W) V
This approximation of the hard boundary condition for electromagnetic waves is

adequate for the present discussion. A more complete treatment is given later.



188 R. G. Kouyoumjian

(6.59)

T

a

(6.60a)

(6.60b)

where the constants of proportionality are referred to as launching
coefficients. It follows then that

dEd(P) = dpm-[i1ii2Fs + t'1fc2Gs] e-jk« (6.61)

in which

F,= (6.62)

Q
s(g+s)

—jke~Jh
4rr

-^dpm-blL'-p = K^,

exp [-faJ(t')dt'j = Tph

for the sake of notational brevity. If the reciprocity principle is to be
satisfied, Dp(l) must have the same functional dependence as Dp(2),
i.e., if a source at 0 is to produce the same field at P as a source at P
produces at 0. It is apparent that the bracketed quantity in (6.57) serves
as a generalized diffraction coefficient for the convex surface, analogous
to (6.31) for the edge. 1

If S is a closed surface, a surface ray initiated at Q, may encircle S :
an infinite number of times. The length of the surface ray path for the /th
encirclement is t +1T with Tthe length of the closed path. These multiply­
encircling rays can be summed to contribute

1 — exp| —(/kT + f ap(l')dt')|

to the denominator of the expression for the diffracted field.
If the source is on the surface at QI, one still employs (6.56), (6.50),

and (6.25); however in this case ap(2) is related to a (1) by (6.54) and
atQ.

and G has the same form as F except that the superscript h is replaced
by s. Here t is the distance between Q, and Q2 along the surface ray, and
we have set :
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H(Q2)= Y^-^b^ + bJ^, (6.63)

and for a source at Q,

s
(6.64)

(6.65a)

A = (6.65 b)

n = i/z=,

4:=4 (6.66a)

^W(Q2) = yc ■ [i, + j' ~t2 ,

where

and 'S and <?s have the same form
the superscript h is replaced by s.

—jke~ik'
4 it

as J and X., respectively, except that

Employing reciprocity it is found that

 (6.66b)

which is not surprising when one recalls that the diffraction coefficient is
the same for the excitation of a surface ray mode and the radiation from a
surface ray mode.

|

The Geometrical Theory of Diffraction and Its Application

and Gs has the same form as except that the superscript h is replaced
by s. In (6.54) </ip0 has been replaced dtp,, and dp = o dip2. Ed(P)
is calculated by integrating over the aperture in question.

At first glance it may seem that the field on S can be calculated
directly from the surface ray field. However, the surface ray field is not a
physically observable field; as a matter of fact, it does not have the
dimensions of an electric or magnetic field, as will be seen when the
expressions for Dp are given. Thus in (6.56) the surface ray field merely
serves as a transfer function between the incident field at Q, and the
diffracted field at Q2. However, both the surface ray field and the field on
the surface vary with respect to t in the same manner, which makes it
possible to calculate the magnetic field at Q2 on the perfectly-conducting
surface by introducing attachment coefficients Ap in the place of diffrac­
tion coefficients at Q2.

Thus for a source at 0

y=e’j‘' |/5 X D>h(i)

I
j and

4 = -^.
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If the surface source at Q, is an electric current dipole Pc = Ilni,

e~iks,E(P) = n2ZcI I Fs (6.67)

with Fs given by (6.62), and the magnetic field induced on S is

(6.68) |H(Q2) = 62/fy5

6.4.2. The Parameters

(6.69)

with .A. given by (6.65 b).
In the case of simple surfaces such as the spherical surface, the

cylindrical surface, the conical surface and the plane surface, the geodesics
are known and they are easy to describe; otherwise they can be found from
the differential equations for geodesic paths, which is a formidable but
straight forward exercise, see [6.26], Calculating dtit, dt]2, diplt dip2
and q is a matter of differential geometry involving the rays and the
surface; this is discussed in [6.21,26], In the paragraphs to follow
expressions will be given for the diffraction coefficients, launching
coefficients and attenuation constants.

e
s(e + s)

on \hb on )

The diffraction coefficients, launching coefficients, and attenuation
constants depend on the local geometry of the surface, the wave number k,
and the nature of the surface, as described by the boundary conditions.
Keller and Levy [6.21] have given the first-order terms in the ex­
pressions for the diffraction coefficients and attenuation constants.
However, before we present their results, it is desirable to examine further
the terms “soft” and “hard” boundary conditions.

This terminology is borrowed from acoustics. A soft boundary is one
where the pressure field vanishes at the surface; it is also referred to as a
Dirichlet boundary. On the other hand, a hard boundary is one where the
normal derivative of the pressure field vanishes at the surface; this is also
referred to as a Neumann boundary. Two types of surface ray modes have
been assumed. For one type the electric field is in the binormal direction
so that Ep = bEp, and for the other, the magnetic field is in the binormal
direction so that Hp = iHp, and there is a normally-directed electric
field n • E„. The binormally directed electric field clearly satisfies a soft
or Dirichlet boundary condition at the surface, whereas the binormally-
directed magnetic field satisfies the boundary condition

8H
dn
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(6.70)

[£>oP]2 = (6.71)

for the soft surface, and

(6.72)

[OoV = (6-73)

for the hard surface, where the Miller-type Airy function is given by

and the prime denotes differentiation with respect to the argument of the
function.

1/3

I 9PeJ

a112
25'6It1/2(fca)1'6 [Ai'( —<7P)]2

“Op

in which hb is the metrical coefficient associated with the unit vector I.
The above boundary condition describes what we will refer to as a hard
EM boundary. At high frequencies the second term is relatively small,
so that the surface ray magnetic field satisfies a hard or Neumann
boundary condition to a first approximation. Also (6.69) reduces to the
hard boundary condition in the case of cylindrical surfaces where hb = 1.
These observations concerning the boundary conditions are of im­
portance in the paragraphs to follow.

Let gg ne the radius of curvature of the surface along which the surface
ray is propagating in the plane containing the normal to the surface and
the tangent to the surface ray. As mentioned earlier, Keller and Levy
[6.21] have used first-order asymptotic solutions for the diffraction of
acoustic (scalar) and electromagnetic waves to deduce the attenuation
constants and diffraction coefficients. For these canonical problems
gs = a, a constant. According to Keller and Levy

e’^ 1 a»2

25'67r1'2(ka)1'6 qp [Ai(-9p)]2

1 "
Ai(—x) = — f cos(|t3-xt)dt,

71 o
Ai(-gp) = 0,

Ai'(-«p) = 0,

5 1 ( ka\'
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Surface

A. Keller's result B. Correction terms

1 +

Hard acoustic ,2/3

e

Hard EM ,2/3

Dots indicate differentiation with respect to the arc length variable

Soft acoustic
and soft EM

Table 6.2. Diffraction coefficients and attenuation constants for the curved surface

Square of diffraction coefficient
= (Column A) ■ (Column B)

'jr~l/22“ 5/6 q J73 e"A/12
*,/6(Ai'(\))2

Qt = radius of curvature along the geodesic
Pm = radius of curvature perpendicular to the geodesic (transverse curve)

n~>/2 2"3/5^/3e--,’'/12
~*,/6?p(Ai(-g,))2

-id

Voltmer [6.25] employing the same canonical problems as Keller
and Levy, obtained attenuation constants and diffraction coefficients
of improved accuracy by retaining higher-order terms in the asymptotic
solutions. Voltmer’s corrections to the attenuation constants and
diffraction coefficients are of order (2/ka)2'3.

The first-order approximations given by (6.70)-(6.73) do not depend
on whether the surface is cylindrical or spherical or on whether the wave
is acoustic or electromagnetic; however this is no longer the case with the
more accurate formulas. An explanation of these second-order differences
is best accomplished by examining the high-frequency diffraction from
a more general surface, i.e., a surface of variable curvature along the ray
path or of arbitrary curvature transverse to the ray path.

Keller and Levy [6.22], Franz and Klante [6.23], Hong [6.24],
and Voltmer [6.25] have considered the high-frequency diffraction by
general convex surfaces. Hong has obtained asymptotic solutions to the
integral equations for the plane wave diffraction by a hard acoustic
surface and the plane wave diffraction by a hard EM boundary. Voltmer
has extended this work to soft boundaries, which are the same for
acoustic and EM waves, as we have noted. The solutions were carried
out to second order, and they are functions not only of gg, the radius of

__L(± + J^ +
I to 4e,„

S W^+4^ + -”
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D. Correction terms

©W6 1 +

1/3
t +

A

Zeroes of the
Airy function
Ai(-,p) = 0

=2.33811
q2 = 4.08795
Ai'(-?1) = .70I2l
Ai'(-?2) = - .80311

Zeroes of the
derivative of
the Airy
function
Ai-(-,„) = 0
q, = 1.01879
q2 = 3.24820
Ai(— 9, = .53566
Ai(-,s) =-.41902

curvature of the surface with respect to arc length along the ray trajectory,
but also @g, gg, and g,n, where the dot denotes a derivative with respect
to arc length along the ray trajectory, and o,„ is the radius of curvature
of the surface in the direction of the binormal to the ray. Expressions
for the attenuation constants are evident from the solutions; these are
tabulated in Columns C and D of Table 6.2. On the other hand, complete
expressions for the diffraction coefficients cannot be obtained from these
solutions, because og is assumed to be zero at the point of incidence on
the surface, where the diffraction coefficient is evaluated. This condition
was imposed to simplify the pertinent integral equations. The diffraction
coefficients (more precisely, the diffraction coefficients squared) are
given in Columns A and B of Table 6.2. The incomplete portion of the
second-order term is indicated by (...); it is a function of oe and In

furthermore it is

\ 2 )

m1"

:enuation constant
L (Column C) ■ (Column D)

Keller’s result

e-J«>3

I
deriving these results it is assumed that q&/q1}

• assumed that the surface rays have no torsion.
It is believed that the attenuation constants and diffraction coefficients

listed in Table 6.2 are the best available at present and that they are
adequate for most calculations, even though the expressions for the

4 The Qt and terms in the diffraction coefficient will be the subject of a future in­
vestigation.

(^)Z
+ _LL!___ e. e.e, e.'

\ 10 4s,„ 60 901

S' (’'U-^e^ + Tks-)
9j\t0 4p,, 60 901
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1/2

4

2/3
,1/2

(6-74)
3 DSP,

6

1/3

(6.75)
2/3

4 = e

•Ai(-4+bd

r / 2 v•Ai'(-?,) 1- M-
l \*ee/

'! "2 (2nk)112

diffraction coefficients are not complete to second order. The improved
attenuation constants are very important, because of the sensitivity of I
numerical calculations to errors in these parameters, particularly in the j
deep shadow region; corresponding errors in the diffraction coefficient
are clearly less important to numerical accuracy.

The launching coefficients have been defined in (6.60). To determine
the launching coefficients the radiation from a magnetic current moment
on a perfectly-conducting sphere and the radiation from magnetic
current line sources on cylindrical surfaces have been analyzed [6.27],
From the asymptotic solution of these canonical problems and their
ray-optical interpretation it is found that for both cylindrical and
spherical surfaces

7 irV'2

-W...
where vp are the zeroes of the Hanke! function in the first equation and the
zeroes of the derivative of the Hanke! function in the second equation. It
is apparent that the relationship of the launching coefficient to the
diffraction coefficient does not depend on the surface curvature transverse
to the ray direction. For this reason, one may assume that

L‘„ = e J ”2(2nk)'

H‘2'(ka)D*,

2/3  .

I

L \^g

These expressions for the launching coefficients, where Dp and D* are
obtained from Table 6.2, are the best available at present. It would be
desirable to solve a canonical problem where the magnetic current
moment or line source is on a surface of variable curvature as a further
check. The attachment coefficients follow from the above equations
and (6.66).
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:3/3 dz»1(t)= (6.76)

(6-77)r 1 lk^\
o e, \ 2 )

1/3
I dt'.

'n r,

From Table 6.2 it is seen that the real part of ahp < the real part of so
that 7^h is exponentially larger than 7J and the F-type functions are ex­
ponentially larger than the G-type functions. Thus in the shadow region,
the contributions from the latter functions are important only when £'( 1)
is nearly parallel to or dpm is nearly parallel to tt. Furthermore from
examples involving a cylindrical geometry, it has been found that the
dominant F-type functions are independent of torsion to a first-order
approximation; however this is not the case for G„ and ®,. Torsion
appears to be a second-order effect, which is important mostly when
accuracy is required in the deep shadow region.

and w2(r), which has the same form as Mqfr) except that the contour of
integration is F2; these contours of integration are shown in Fig. 6.8. In
the expressions to follow it will be convenient to use

6.4.3. Transition Regions

The series representations are rapidly convergent when the field point
is deep in the shadow region. Usually only the first few terms are required
to achieve reasonable accuracy, when the radii of curvature of the surface
are larger than a wavelength or so. However as the field point Q2 ap­
proaches close to Q, and more terms must be added to maintain accuracy,
it is then no longer desirable to treat the excitation, propagation and
diffraction of the different surface ray modes separately. As a result, the
series representations are replaced by integral representations, and these
are found to be proportional to Fock-type functions. When the source is
on the surface the angular extent of the transition region from the
shadow boundary is roughly (kg8)~1/3; when the source is removed from
the surface it is more nearly (/cpg/2)"1/3.

In contrast with the deep shadow region a first-order asymptotic
approximation is usually adequate for the transition region. In numerous
calculations it was found that curves obtained from the expressions for
the transition region joined smoothly with those obtained from expres­
sions for the shadow region.

In describing the fields in the transition region, we employ the Fock-
type Airy functions
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In terms of

Fig. 6.9. A pseudo-ray system for calculating the field in the illuminated part of the transition
region

T -PLANE OR
Z —PLANE

Tjh = e- j^p. and Ts = e-j^p

/ *
Fig. 6.8. Contours of integration for the Airy
and Fock functions

to first order, where tp = qp enp(-jn/3) and rp = qp exp(-jn/3).
When the field point is in the shadow region f, t > 0 and when the field

point is in the illuminated region <f, t < 0. In the illuminated portion of the
transition region, one visualizes the surface ray as travelling from Q, to
Q2, where it sheds tangentially back toward P, as shown in Fig. 6.9.
The ray path Q! Q2P does not obey the generalized Fermat’s principle
and therefore it is a pseudo-ray system, but it does serve as a useful
coordinate system to calculate the field at P in the illuminated part of the
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is replaced by
(6-78)

9& x

is replaced by
(6.79)

-jgft*

is replaced by
(6.80a)

t >0,

is replaced by
(6.80b)

t>0,

where

e“;<tdr,¥>«) =

s?

tgO
rgO’

f Z.p(l) Z>2(2) Tph

f 4(i)^(2)Tph

f zi-,(1)d;(2)t;

Z l;(1)^(2)t;

tgO
x/m, t&O’

transition region. Note that the surface ray divergence factors [/df/Jdf/j
and ]/</ip1/d(p2 are equal to one in this region.

As in the deep region, the expressions for the field in the transition
region may be deduced from the solutions of the canonical problems
for this region. On the other hand, recognizing the GTD solution for the
deep shadow region as a residue series, it is sometimes possible to infer
the integral representation from which it follows. However, this is a
risky procedure and it appears to yield useful results only when the source
is on the surface.

In the transition region

1 f
77 w'2(r)

1 r e'J<'J -----|/tt r, W2(r)

I ik\112(y| (mx) 1 ip(?),

(yy^rm
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and

m =

x

is replaced by (6.81)

f Dph(l)Dph(2)Tph

The function g(<;) has the same form as g(Q except that w2(r) in the inte­
grand is replaced by its derivative; moreover follows from ip(c')
when w'2/w2 is substituted for w2/w'2. The Fock-type functions above
have been described and tabulated by Logan [6.28]; they are also
briefly described in (Ref. [6.9], Section 1.3.3).

The expressions for the transition regions in (6.78) and (6.79) have
been found to be very useful. Patterns calculated from them blend well
with those calculated from geometrical optics deep in the illuminated
region and from the surface ray modes in the shadow region [6.27].
On the other hand, (6.80a) and (6.80b) appear to be of limited value
because the GTD approximation precludes Q2 from being closer to Qt
than a half wavelength or so. Moreover when the distance between Q,
and Q2 is small compared with ot, the currents or mutual coupling can be
calculated with reasonable accuracy by assuming the surface is plane.

When the GTD solution involves a field reflected from a curved
surface, the geometrical-optics representation of the reflected field is
usually the greatest source of error. Furthermore the behavior of the
field in the transition region adjacent to the shadow boundary is more
complex than in the case of edge diffraction; this is particularly true in
the illuminated part, where the solution should match the geometrical-
optics approximation of the total field.

Wait and Conda [6.29] have obtained expressions for the field
diffracted by a circular cylinder or sphere near the shadow boundary
using a method based on the earlierworkofFocK[6.30] and Goriainov
[6.31]. Their solution has been adapted (with slight modification) to
the GTD format used here, with the result that for a surface whose ge
is nearly constant in the transition region.

1/2
I m G®

72Yp(x)-y

pgE(t) ji/3
= [ge(2)]1/6

le8d)J ’
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with

2

£ =

5 = — sin 1 «i -?2»

x = 2kL^,

D(x) = \ — eJ'Ci+*) sgn(5) f e ;'2dr,
r n |i/s|

l=7+7’

for cylindrical and spherical waves normally incident on the shadow
boundary. The quantities s' and s are the distances from the source and
field points to their respective points of tangency on the curved surface,
and for (6.81) to be valid |/ kL/2 should be greater than m.

The total field in the illuminated part of the transition region is the
incident field of geometrical optics plus £d(P) given by (6.57), (6.58), and
(6.81). D(x) is the dominant term in (6.81); it is associated with the Fresnel
(or Kirchhoff) diffraction by a half plane. As such it is independent of the
polarization of the incident wave and the surface curvature. G(<j) can be
regarded as a correction term containing this information; it has separate
values for the s and h boundary conditions. The discontinuity in D(x) at
the shadow boundary (x, 5 = 0) exactly compensates the discontinuity
in the incident field there so that the total high-frequency field is con­
tinuous at 5 = 0. G(?) is defined and presented graphically in [6.29]. Also
G(«) = exp(-jtc/4) [p© + 1/(2?|A)] and exp(-JIr/4) [q({) + I/(2{ ]A)]
for the s and h boundary conditions, respectively; the reflection coefficient
functions p and q are described in [6.28] and (Ref. [6.9], Section 1.3.3).

This representation has been found to have good accuracy on the
shadow boundary, and it can be shown that it blends with the GTD
solution (6.57) for the deep shadow region. This blending it so first order;
it is smoother for the h than the s boundary condition, and the larger
kL the closer it occurs to the shadow boundary. Also this representation
has been found to be quite accurate in the illuminated region near the
shadow boundary, but it does not always join smoothly with the
geometrical-optics field. Recently the author has become aware of the
work of Ivanov [6.71] which appears to overcome this difficulty.
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6.4.4. Two-Dimensional Problems

with

with 1 ,or

6.5. Applications

.5

1
1^’

dpm with dM, a line of infinitesimal magnetic current, and in
(6.62) and (6.65b) with — k exp(jrt/4)/[/8itk.

The preceding development can be applied to problems with a two-
dimensional geometry by replacing

dti
d>l2

g
s(g + s)

e dip2

In applying the GTD one begins with ray tracing. The rays emanating
from the primary source are considered first. The boundary surface of the
radiating structure blocks the passage of the incident rays so that the
space surrounding it is divided into an illuminated region occupied by the
rays from the source and a shadow region where these rays do not
penetrate. Upon encountering a perfectly-conducting surface the
incident ray initiates a reflected ray from an interior point of the surface
of a diffracted ray from edges, tips, or points of grazing incidence. The
directions of these rays are determined by the laws of reflection and
diffraction, which are corollaries to the generalized Fermat’s principle;
these laws have been described in the earlier sections. It should be noted
that the reflected and diffracted rays also have illuminated regions
which they cover and shadow regions which they do not penetrate.
Moreover, these rays may encounter the boundary and give rise to
higher-order diffracted or reflected rays. The field of the higher-order
rays usually diminishes so rapidly with the number of successive diffrac­
tions that multiply-diffracted rays beyond the second or third order can
be neglected. However in most two-dimensional problems (and some
three-dimensional problems), it may be possible to sum the contributions
from all the multiply-diffracted rays directly or to treat them by a self-
consistent field procedure so that a closed form result is obtained.

Many problems are sufficiently simple so that the ray paths passing
through a given field point can be determined without difficulty; in such
cases the point of diffraction remains fixed as the field point varies or
it moves about in a manner that can be described analytically. The paths
of rays reflected from a plane surface are readily found by the method of
images. However in the diffraction or reflection from a complex structure
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6.5.1. Reflector Antenna

Q-

E‘° = (6.82)

J?

n—a>8>5
n—a<9^n,

rEr,
.0 .

I
I "
I

The first example chosen to illustrate the application of the GTD is
the calculation of the far-held pattern of an axially-symmetric parabolic
reflector antenna. The essential components of our example are the
reflector with a circular aperture of radius a and the feed positioned at
its focus F, as shown in Fig. 6.10.

The geometrical optics far-field

where Ef is the held of the feed, which is either calculated or measured
and 0 is the polar angle measured from the z-axis. A small angular sector
Sx5(kay' in the forward axial direction has been excluded from the
GTD solution, because of the difficulties encountered when there is a
confluence of a reflection boundary and a caustic of the diffracted rays.
The held in this region can be determined by the current-distribution
method or the aperture-held method (Ref. [6.14], Chapters 6 and 9)
and [6.32],

Let us calculate the pattern at the point P in the plane </>, n + <p.
This plane intersects the edge of the reflector at 1 and 2. Diffracted
rays are induced at each point on the edge of the reflector, but only the
straight line paths joining F and P which pass through the Points 1 and 2
satisfy (6.28). The paths F1P and F2P are the minimum and maximum
distances between F and P which include a point on the edge of the
reflector.

The ray singly-diffracted from edge 2 crosses the aperture and induces
a doubly-diffracted ray at edge 1. The contribution to the far field from

The Geometrical Theory of Diffraction and Its Application

it may be necessary to employ a computer search routine to determine the
points on the surface from which the rays emanate. These search pro­
cedures, such as the bisection method, employ the laws of diffraction or
reflection.

It is evident that the GTD solution simplifies the surface radiation
problem to the radiation from a finite array of scattering centers, which
greatly reduces the time and cost of calculations. Since the GTD is a
high-frequency method, these scattering centers cannot be spaced too
closely. Generally speaking, they should be separated by a wavelength
or more; however, the GTD solution often remains valid even for closer
spacings. It is found that GTD solutions tend to fail gracefully as the
frequency diminishes, until the low frequency or Rayleigh region is
reached.
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Fig. 6.10a and b. Reflector antenna showing diffracted and reflected rays

the rays singly- and doubly-diffracted from the edge at 1 can be written as

Ed(l)

(6.83)

■J
R

£

= [e'(s'> - a, </>) • D (ip2, tp,; n/2)

+ Ef(s', Tt - a, <p + Jt) • p (y, ; it/2) ■ D (ip2, y; it/2)

'la ] sin0
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in which

(6.84)

I.

Vi = y + y - a,

s' is the distance from F to the edge of the reflector, and R is the distance
from P to the center of the aperture, which is chosen as the phase reference.

The factor J appears in the second term because there is a caustic on
the ray which crosses the aperture. The ray diffracted from 1 is shadowed
in the region tr/2 < 0 < rr/2 + y, <f> + n shown in Fig. 6.10b. The dis­
continuity in the geometrical-optics field at the shadow boundary
(tr —a, </>) is compensated by the discontinuity in the field of the ray
singly-diffracted from 1, and the discontinuity in the field of the ray
singly-diffracted from 2 is compensated by the field of the ray doubly-
diffracted from I. The field Ed(2) of the rays singly- and doubly-diffracted
from 2 has a similar form. The fields of the higher-order multiply-
diffracted rays could be included in the solution, but this contribution is
insignificant when the aperture diameter is greater than a few wave­
lengths.

The field of the ray diffracted from the edge at 2 and then reflected
from R on the concave side of the reflector is given by

It
<Pz = 7 + y+ 0>

in which ipr is the angle between the ray diffracted to R and the plane
tangent to the reflector at 2, s is the distance between 2 and R, g is the
caustic distance of the edge diffracted ray (it is negative), g1, g2 are the
principal radii of curvature of the reflected wavefront at R, f is the focal
distance of the reflector, 0R is the phase factor relating this contribution
to the phase center, = 2 tan’1 (2//a) - tt/2, and 0, = tan’1 (4//a).

A caustic occurs between 2 and R and a second caustic between R
and P, which accounts for the minus sign preceding E1. Edr(2, R) vanishes
outside the interval 02 < 0 < 0,. 0 may be expressed in terms of ipr but in
calculating the pattern, we wish to determine ip, (and the Point R) as
a function of 0. This can be done by a simple computer search routine
such as the bisection method mentioned earlier. Equations (6.83) and

£dr(2, R) = — Er(s', it — a, i/> + it) ■ P(>pr, ip,; n/2) • R

] / |g| ,/;------; _.4s e-W'™

02<0<0,



E(P) = Ee° + Ed(l) + Ed(2) + Edr(l, R) + Edr(2, R). (6.85)

(6.86)Ds(27i-y, ; n/2)/(</>) =

and magnetic

= - (e x s') ■ Er Dh(2n - y, V1; tr/2) (6-87)

ring currents flowing on the dege of the reflector [6.32-6.34]. This
procedure is accurate for 0 = it, and it is a good approximation in the
caustic region joining smoothly with the field of the two edge diffracted
rays, if the diffraction coefficient is slowly varying in this region.

Arm [6.35] has measured the H-plane pattern of a parabolic reflector
antenna mounted on a ground plane and fed by a monopole. This is a
desirable configuration to test our solution, because the scattering from
the feed support has been neglected. The measured pattern and the pattern
calculated from our GTD solution are shown in Fig. 6. fl. The two
patterns are seen to be in good agreement. In the range of aspects 10° < 0
< 70° the pattern is quite frequency sensitive. If the frequency used to
calculate the pattern is changed by only 5 percent, the agreement between
the calculated and measured patterns is greatly improved.

The wide angle side lobes also can be calculated by physical optics,
but the computational time is much greater and the results are less
accurate. The GTD can be applied to calculate the patterns of a wide
class of reflector antennas including those with subrefiectors, where
the scattering from the subrefiector must be taken into account.

A more complete analysis would include the surface rays exctited at 1 and
2; however the contribution from these rays is generally very weak.

The rear axis of the reflector is a caustic of the diffracted rays, so the
GTD can not be used here without modification. In the caustic region
n — 5 < 9 g re, the field can be calculated from an integral representation
using the equivalent electric

!/¥'■— eE!
Zc
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(6.84) simplify markedly in the H- and E-plane, where Ef is usually
parallel or perpendicular to the edge at f and 2. For example, in the H-plane
Er • D = — Ef • D ■ R = Ef Ds and in the E-plane Ef ■ D = Er • D ■ R
= — E‘Dh. There is a similar ray diffracted from edge 1 and reflected
from the concave surface.

In the region n — S> 9 > &
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locates the points of diffraction Q2 and Q'2 as a function of the aspect
angle 0, which together with b and a is defined in Fig. 6.12. Equations
(6.61), (6.62), and (6.78) and the expressions for the GTD parameters
and g(£) are used to calculate the diffracted field. The finite width of the
slot (0.34 wavelength) is taken into account by an array of 5 magnetic
dipoles in the aperture. In Fig. 6.13 calculated patterns are compared with

6.5.2. Slot in an Elliptic Cylinder

As a second example of the application of the GTD we will briefly
i consider the radiation from an axial slot in a perfectly-conducting

elliptic cylinder. The far-zone pattern is to be calculated in a plane
perpendicular to the axis of the slot so that the surface rays involved
are torsionless. The rays which contribute to the field in the illuminated
and shadow regions are depicted in Fig. 6.12. The equation

2

tu

-J

5 —40 —
o

I I I
60 60 100

ANGLE 9 (DEGREES)

Fig. 6.11. H-pIane pattern of a parabolic reflector antenna with a dipole feed
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Fig. 6.12. Rays emanating from a source on a curved surface
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Fig. 6.13. Pattern of an axial slot on an elliptic cyclinder
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m — 1,2,N, (6.89)

£2m = K„ + Em + E^, (6.90)

where E’m is the axial component of the incident electric field at the
center of the mth segment, I„ is the constant current on the nth segment,
and Z„,„ is an element of the generalized impedance matrix, which
describes the total interaction between the m and nth segments.

Let the current on the nth segment be the source of the electric
field Em at the center of the mth segment. The impedance element
2„ = E.JIn in which E.m is the axial (or z) component of Em.

measured patterns [6.27], and the agreement between the two patterns
is seen to be good. The discrepancy between the calculated and measured
patterns is no worse than that between the two halves of the measured
pattern about its vertical axis.

As noted earlier, the formulas given in this chapter can be applied
formally to cases where there are torsional surface rays, such as a pattern
calculation in an oblique plane in the present example. Since the dominant
term in (6.61) containing Fs is independent of torsion to first order, the
torsional effects are not too noticeable except at the lower levels of the
patterns. On the other hand, in calculating the mutual coupling between
slots, which is exclusively a shadow region phenomenon, the torsional
effects are much more evident than in the corresponding radiation
pattern.

In the two examples considered thus far the GTD has been used to
calculate far fields, but there is no reason why it cannot be used to
calculate near fields provided that the field point is not too close to
a point of diffraction, which is roughly a wavelength in the case of edge
diffraction.

6.5.3. Monopole Antenna Near an Edge

Consider a monopole radiating in the presence of an edge, as shown in
Fig. 6.14. This example is chosen to demonstrate the flexibility of the
GTD by combining it with the moment method described in the earlier
chapters. For simplicity pulse basis functions and impulse test functions
are employed. Dividing the monopole into N segments of length d,
the moment method solution is given compactly by

i -Ej,= f Zm„In,

where E?m is due to the free-space radiation from I„ and Er.m is due to
reflection from the horizontal surface of the wedge, which may be found
from the image of I„ as indicated in Fig. 6.14. It follows then that for
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n

m z

qe-

Fig. 6.14. Monopole on a wedge

zl <U and |z„-zm|,

e~Jkr
(6-91)

Z£„ = e jKS„+sm)cos^cos^ (6.92).

co = ra*1 [£']

JkZcA 
4* ^S„S„(S„ +Sm)

The current at N points on the monopole is given by the current
column matrix

I

= ==m
~' = ±x„

with r = ]/(z-z')2 + u2 in which a is the radius of the monopole; z' = + z„
implies that (6.91) has two terms.

The axial component of the diffracted electric field E^m is determined
by the GTD. The pertinent ray path is nQEm, and

jkZcA
4;r 1- 1 d2_______

k2 dz dz' | r

Magnetic frill current excitation
Pulse basis functions
Impulse test functions

in which [Z]~‘ is the inverse of the generalized impedance matrix and
[E‘] is the column matrix with N elements E‘m. The GTD-moment

Sm

y/////////

I—I i
'xz n rT**

xX J J
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Fig. 6.15. Input resistance of a monopole at the
center of an octagonal plate
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method solution described here is based on the work of Thiele and
Newhouse [6.36], who applied it to calculate the input impedance to a

• monopole at the center of square, octagonal and circular plates. The
coaxial feed is modelled by a magnetic frill current (Ref. [6.37], Ap­
pendix I), which is the source of E'm, and in these examples the wedge
angle WA = (2 — h)tc = 0. In Fig. 6.15 calculated values of the input
resistance for the octagonal plate case are compared with measured
values. The agreement is reasonably good considering the difficulties
encountered with the measurements. The measured and calculated
values of the input reactance compare similarly. • The length of the
monopole is h, its radius is a, and the perpendicular distance from
its base to the sides of the octagonal plate is d.

It is clear that this hybrid GTD-moment method can be applied to a
general wire antenna configuration. Moreover it can be readily extended
to a receiving wire antenna. In this case, referring to the geometry in
Fig. 6.14, E'm consists of directly-radiated, reflected and edge-diffracted
terms.
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6.5.4. Discussion

Q

The examples presented in the preceding subsections are only a small
sample of the problems that have been treated by the GTD. In the early
history of the theory Keller and his co-workers applied the GTD to
determine the scalar diffraction by slits, circular apertures, cylinders,
cylinder tipped-half planes, cones, spheres, and spheroids; in addition
they treated the electromagnetic diffraction by spheres, cones, and
arbitrary cylinders illuminated at oblique incidence. In their papers
the pertinent ray analysis is given along with expressions for the dif-‘
fracted fields away from the radiating body; however the solutions are'
not valid in the transition regions adjacent to shadow and reflection
boundaries. A convenient review of these papers is given in [6.12];i
also many of their results are described in [6.9] along with some ad-1
ditional results for the diffraction by a strip. An improved GTD solution
for the diffraction by a cylinder-tipped half plane using the diffraction'
coefficients and attenuation constants in Table 6.2 is described in [6.38],
Additional contributions to the electromagnetic backscatter from cones;
are presented in [6.33, 6.39-6.43], but the GTD analysis is still notl
complete. For example, work remains to be done on the base-tip inter­
action, particularly with regard to the transition phenomena associated
with the shadowing of the base by the tip. The electromagnetic back­
scatter by circular discs is treated in [6.44, 6.45]. The solution reported
in the latter reference contains a type of doubly-diffracted ray omitted
in the former; however the treatment of the fields of the doubly-diffracted
rays on the illuminated and shadow side of the disc and the factor of
1/2 required at grazing incidence is obscure. The backscatter from
rectangular plates is described in [6.46], where the problem is reduced
to that of a strip for the GTD analysis. In [6.47] a GTD solution is
presented for the scattering by a rectangular cylinder which is illuminated
by the field of a line source. Since the edge diffraction coefficients in
(6.33) are used, the solution is valid in the transition regions. Calculated
patterns are found to be in excellent agreement with those calculated by
the moment method. A comparison of GTD and moment method
solutions for the strip and the two-dimensional corner and trough is
carried out in [6.48]; the patterns calculated from the GTD solutions,
which are valid in the transition regions, are in excellent agreement with
those obtained by the moment method, for the intermediate-sized
structures (0.5 to 5 X). The GTD has also been applied to calculate the
scattering from thin, curved wires [6.49], The patterns are found to be in
good agreement with those calculated by the variational method.

The GTD has been applied to a variety of antenna problems. The
parabolic reflector antenna is treated in [6.32], and calculations of the
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scattering from a hyperboloidal subreflector are presented in Chapter?;
Subsection 7.3.4. Ray-optical methods are employed to determine the
aperture reflection coefficients and radiation patterns of parallel-plate
waveguides in [6.50-6.55]. The related problem of the E- and H-plane
patterns of hom antennas was studied in [6.56-6.58]. The calculation of
the patterns in the principal planes is facilitated by reducing the geometry
to a two-dimensional configuration; however in the H-plane calculation,
one may also get significant contributions from rays diffracted from the
edges parallel to this plane. The reflection coefficient for the junction ofa
rectangular waveguide and an H-plane sectorial hom is calculated in
[6.59], The diffraction coefficient in (6.33) is needed to get accurate
results for very small flare angles where overlapping transition regions
occur at the junction. In [6.60] the GTD is used to investigate the
gain and radiation pattern of a conical hom excited by a circular wave­
guide operating in the TE„ mode.

The examples discussed thus far have involved relatively simple
shapes, but the GTD also can be used to calculate the radiation from
complex structures. The radiation pattern of a linerar array of pistons
mounted in one face of a rigid, rectangular box is considered in [6.61].
Although this is an acoustics problem, it has much in common with an
array of slots in a rectangular ground plane. When the contributions
from the incident (geometrical optics) ray plus all the rays singly- and
doubly-diffracted from the 12 edges of the box are taken into account,
the resulting calculated patterns are in excellent agreement with measured
patterns. The GTD has been employed to calculate the patterns of slots
and monopoles positioned on the fuselage of an aircraft [6.26,6.62],
Even though the aircraft is modelled in its most basic form, so that
only the fuselage and wings are considered in the roll plane analysis,
the ray analysis is not simple. In addition to the incident ray, a surface
ray is launched on the fuselage, and the surface ray sheds a diffracted
ray, which in turn may be reflected and diffracted from the wings.
Generally speaking, the agreement between calculated and measured
patterns is excellent. The GTD has been used to predict the patterns of
satellite antennas [6.63,6.64], The configurations studied consist of
dipoles radiating in the presence of finite circular and rectangular
cylinders and monopoles mounted on the cylinder. Calculated patterns,

1 largely based on preliminary results, appear to be in quite good agreement
I with measured patterns. The edge diffraction coefficients described in this

chapter are employed in [6.26, 6.61-6.64],
For simplicity the discussion in this chapter has been restricted

to the radiation from hard, soft and perfectly-conducting surfaces in
| isotropic, homogeneous media, but the GTD can be extended to treat

bodies in inhomogeneous media [6.65, 6.66] and anisotropic media
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6.6. Conclusions

In the geometrical theory of diffraction, the diffracted fields propagate
in the same manner as the geometrical-optics field. The spreading of
rays in a plane containing the edge caustic or the caustic or surface
diffraction is determined from differential geometry; thus the field of a
diffracted ray is determined in part by geometrical considerations and
in part by wave considerations provided by the diffraction coefficients.
Furthermore, it is assumed that the diffraction mechanism is, in effect,
localized at an edge or shadow boundary, and that it functions inde­
pendently of the other parts of the structure. The ultimate accuracy of
the geometrical theory of diffraction appears to be limited by these two
assumptions, particularly in the case of the smaller radiating structures.

Numerous comparisons of GTD solutions with asymptotic ex­
pansions, calculations based on convergent (exact) methods, and
measurements have shown that the GTD provides a systematic approach
to the high-frequency solution of a wide variety of antenna, scattering
and propagation problems. In many instances the GTD solution is not
only accurate at high frequencies, but also at relatively low frequencies,
where the ratio of the characteristic dimension to wavelength is of
order unity. However, presuming that the GTD is an asymptotic method,
one expects it to fail as the frequency is reduced, regardless of the number
of terms retained in the approximation. At sufficiently low frequencies
the local behavior of reflection and diffraction break down.

As a purely ray-optical technique the GTD fails near caustics and
in transition regions adjacent to shadow and reflection boundaries;
however in this chapter we have shown that the GTD can be extended to
calculate fields in the transition regions. As noted earlier, supplementary
methods exist for treating the field at a caustic; often one can introduce
an integral representation of the field where geometrical optics or the
GTD is used to determine the equivalent source. If desired, the accuracy
of the geometrical optics current can be improved by using Ufimstev’s
method [6.70],

The reason for using the GTD method stems from the significant
advantages to be gained; namely

a) it is simple to use, and yields accurate results;
b) it provides some physical insight into the radiation and scattering

mechanisms involved;

[6.67] and to bodies with penetrable [6.68] and impedance surfaces
(Ref. [6.9], pp. 48-49, and [6.28]). A thorough treatment of ray-optical
fields in inhomogeneous and anisotropic media is given in [6.3, 6.69].'
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c) it can be used to treat problems for which exact analytical solutions
are not available;
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